[原创] 重要性采样/Importance Sampling

转载需注明出处:https://www.codelast.com/

查看本系列文章合集,请点击这里

在前面的文章中,我们看到,随机采样是一个蒙特卡罗方法中很关键的步骤。而采样是需要技巧的,单纯地增加采样次数太没有效率了,比如说,如果随机采样一亿次,你可以把结果计算得特别精确,但是采样一亿次需要的时间非常长,长得远远超过了我们能接受的范围,这又有什么意义呢?
人们发现,有一些方法可以让随机采的样本“特别好”。那么什么算“特别好”呢?比如说,本来使用没有任何原则的采样方法,需要采样1万个点,才能让计算出来的结果很接近真实值;现在使用一个“特别好”的采样方法,可以让我们只需要采样100个点,就可以让计算出来的结果很接近真实值了,这样就极大地减少了计算量。
阅读更多

[原创] 蒙特卡罗算法 对比 拉斯维加斯算法

转载需注明出处:https://www.codelast.com/

查看本系列文章合集,请点击这里

  • 区别

讲到这里,稍微提一下,随机算法可以分为两类:蒙特卡洛算法 & 拉斯维加斯算法。
对蒙特卡洛算法来说,采样越多,越近似最优解
对拉斯维加斯算法来说,它永远给出正确解的随机化算法,总是给出正确结果,或是返回失败。
阅读更多

[原创] 蒙特卡罗方法的实例2:计算定积分

转载需注明出处:https://www.codelast.com/

查看本系列文章合集,请点击这里

为了对蒙特卡罗方法有一个直观的印象,本文再举一个实例(计算定积分),以说明蒙特卡罗方法的用途。

  • 什么是定积分

对于一个给定的正实值函数 f(x) ,它在一个实数区间 [a,b]上的定积分 \int_a^b {f(x)dx} 可以理解为在 OXY 坐标平面上,由曲线 (x,f(x))、直线 x=a,x=b以及x轴围成的曲边梯形的面积值。

阅读更多

[原创] 蒙特卡罗方法的定义、历史以及存在意义

转载需注明出处:https://www.codelast.com/

查看本系列文章合集,请点击这里

  • 定义

来自维基百科:

蒙特卡罗(洛)方法(Monte Carlo method),也称统计模拟方法,是1940年代中期由于科学技术的发展和电子计算机的发明,而提出的一种以概率统计理论为指导的数值计算方法。是指使用随机数来解决很多计算问题的方法。

也就是说,蒙特卡罗方法并不是指一种特定的算法,而是一类算法的总称,这种算法主要利用了“随机”来实现。 阅读更多

[原创] 用人话解释蒙特卡罗方法/Monte Carlo method(文章合集)

转载需注明出处:https://www.codelast.com/

蒙特卡罗(洛)方法(Monte Carlo method),也称统计模拟方法,是1940年代中期由于科学技术的发展和电子计算机的发明,而提出的一种以概率统计理论为指导的数值计算方法。是指使用随机数来解决很多计算问题的方法。
阅读更多

[原创] 蒙特卡罗方法的实例1:计算圆周率

转载需注明出处:https://www.codelast.com/

查看本系列文章合集,请点击这里

为了对蒙特卡罗方法有一个直观的印象,我们先举一个实例(计算圆周率 \pi ),让从来没有接触过蒙特卡罗方法的人产生“原来这就是Monte Carlo”的感觉,以减少刚开始学习的困惑。

  • 非蒙特卡罗方法

圆周率 \pi 可以怎么计算?其中一个“常规”的方法就是利用 \pi 的莱布尼茨公式:
\frac{\pi }{4} = \sum\limits_{n = 0}^\infty {\frac{{{{\left( { - 1} \right)}^n}}}{{2n + 1}}} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots
不断增大 n 的值,就能越来越逼近 \frac{\pi }{4} 阅读更多